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1 Introduction

The goal of this project was to create a seven-bit current-output digital to analog converter using
Xschem, Magic, and Skywater Technology’s SKY130 PDK. The output current must be available as
a current source or sink that changes by no more than 0.5%/V over at least 80% of the 1.8V power
supply range. The circuit simultion results must show that without mismatch, the worst-case DNL is
less than 2 LSBs and your INL is less than 4 LSBs and that, with mismatch, the worst-case INL and
DNL are both less than 8 LSBs.

2 GitHub Repository

https://github.com/kburp/current-output-dac-vlsi

3 Design

Figure 1: Depiction of design process for MP4
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4 Schematics

4.1 DAC

During the design process, we were presented with two primary DAC design options. The W-2W DAC
and the design specified by Hammerschmied in 1998. Although the design specified by Hammerschmied
has a significantly smaller INL and DNL than the W-2W without any peripheral devices, the inability
to hold the Idump and Isense voltage potentials to a close level to maintain this INL and DNL when
mirroring the output current meant that for these design specifications, the W-2W ladder was more
suitable. Therefore, we chose to use the W-2W design for this project.

Figure 2: W-2W DAC Design
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Figure 3: Schematic of DAC with Associated Input Multiplexers

4.1.1 Transistor Sizing

After running Monte Carlo simulations with various transistor sizes, we found that the size that is
best for most of the circuit is a width of 24 and a length of 1.
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4.1.2 DAC Gate Voltage Generator
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Figure 4: Design for the Gate Voltage Generator for the DAC

The gate voltage of the W-2W ladder network of the DAC was a cascode voltage created using a
cascode bias voltage generator.

4.1.3 Multiplexers for Digital Inputs

Because the gate voltages of all of our input nMOS transistors when the bit is high needs to be Vbn,
but our binary inputs are given at either VDD or GND, we use Multiplexers to switch between Vbn
and GND based on the input.
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Figure 5: Schematic of MUX
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4.2 Current Mirror
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Figure 6: Schematic of Low Voltage Current Mirror with Bias Current Generators

To achieve the 0.5 percent current change over 80 percent the Voltage supply, we decided to separate
the output of the main DAC from our overall circuit’s output using a current mirror. In order to hold
the INL and DNL down, the current mirror needs to have a low transfer rate error in low voltages,
while having close to linear operation over 80 percent of the power supply. The two options we found
were the Super Wilson Low Voltage Current Mirror or a Low Voltage Cascode Current Mirror design
specified by Bradley Minch. The Super Wilson topology requires another W-2W ladder for biasing,
making it impractical because it would require a larger area to layout, whereas the biasing for the Low
Voltage Cascode Current Mirror is a lot simpler.

4.3 Supply Independent Bias Generation
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Figure 7: Schematic of Bias Generator

We needed a way to generate a relatively constant bias voltage, and decided on this design that we
saw in class.
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5 Layout-Driven Schematic
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Figure 8: Layout-driven schematic of overall circuit.
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In order to make our layout process easier, we created a layout-driven schematic of our overall DAC,
including all of the peripheral components.

6 Testbenches and Simulations

All simulations were run on the layout-driven schematic.

6.1 DAC Transfer Characteristics

Figure 9: Digital input voltage to analog output current transfer characteristic of DAC.
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6.2 Differential Non-linearity

Figure 10: DNL of the DAC in ideal conditions. The worst case DNL is below 0.6 LSBs, which meets
the design requirement of less than 2 LSBs.

6.3 Integral Non-linearity

Figure 11: INL of the DAC in ideal conditions. The INL is below 1 LSB, which meets the design
specifications given to us of 4 LSBs.
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6.4 Sweep of Output Current vs Output Voltage

Figure 12: This is the output current vs output voltage sweep plot. The Voltage change for 80 percent
of the power supply is 0.19 percent per Volt, which meets the requirement of 0.5 percent current change
per volt.

7 Monte Carlo Simulations

7.1 Voltage Current Characteristics

Figure 13: Voltage Current Characteristic of our DAC under Monte Carlo Simulation
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7.2 DNL

Figure 14: DNL of our DAC through Monte Carlo Simluations. The worst case DNL is around 6 LSBs,
which meets the performance specifications of 8.

7.3 INL

Figure 15: INL of our DAC through Monte Carlo Simulations. The INL is around 5 LSBs, which
meets the performance specification of a worst case INL of 8.
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8 Layout

Figure 16: Layout of DAC ladder network
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Figure 17: Combined layout of output current mirror and supply-independent voltage bias generator

Figure 18: Layout of cascode bias-voltage generator
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Figure 19: Layout of a single multiplexer

Figure 20: Layout of full DAC design

9 Layout Versus Schematic

Circuit 1 cell sky130_fd_pr__pfet_01v8 and Circuit 2 cell sky130_fd_pr__pfet_01v8 are black boxes.

Equate elements: no current cell.

Device classes sky130_fd_pr__pfet_01v8 and sky130_fd_pr__pfet_01v8 are equivalent.

Circuit 1 cell sky130_fd_pr__nfet_01v8 and Circuit 2 cell sky130_fd_pr__nfet_01v8 are black boxes.

Equate elements: no current cell.

Device classes sky130_fd_pr__nfet_01v8 and sky130_fd_pr__nfet_01v8 are equivalent.

Flattening unmatched subcell mux in circuit lds_for_lvs.spice (0)(7 instances)

Flattening unmatched subcell dac in circuit dac_top.spice (1)(1 instance)

Flattening unmatched subcell big in circuit dac_top.spice (1)(1 instance)

Flattening unmatched subcell cascode_biasgen in circuit dac_top.spice (1)(1 instance)
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Flattening unmatched subcell mux_tall in circuit dac_top.spice (1)(7 instances)

Class lds_for_lvs.spice (0): Merged 62 parallel devices.

Class dac_top.spice (1): Merged 62 parallel devices.

Subcircuit summary:

Circuit 1: lds_for_lvs.spice |Circuit 2: dac_top.spice

-------------------------------------------|-------------------------------------------

sky130_fd_pr__pfet_01v8 (72->47) |sky130_fd_pr__pfet_01v8 (72->47)

sky130_fd_pr__nfet_01v8 (101->64) |sky130_fd_pr__nfet_01v8 (101->64)

Number of devices: 111 |Number of devices: 111

Number of nets: 58 |Number of nets: 58

---------------------------------------------------------------------------------------

Resolving symmetries by property value.

Resolving symmetries by pin name.

Netlists match with 15 symmetries.

Cells have no pins; pin matching not needed.

Device classes lds_for_lvs.spice and dac_top.spice are equivalent.

Final result: Circuits match uniquely.

.
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