
Acoustic Modem Project Report

Kenta Burpee

May 2023

1 Introduction

The goal of this project was to implement an acoustic modem receiver using MATLAB.
Acoustic modems are devices that transmit or receive sound waves and are often used for
underwater communications. The function of the acoustic modem receiver is to decode a
high-frequency signal it receives from the transmitter and extract bits of information from
it. In this case, the extracted bits are later converted to a string that contains a message.

2 Procedure

2.1 Block Diagram

Figure 1: Block diagram for the acoustic modem receiver.

2.2 Steps

The first step in decoding the received signal is to find the start of the encoded message
in the transmission. This is done by using cross-correlation with a known noise-like signal
that is put before the message in the transmission. yR(t), the received signal gets converted
to yT (t), which starts at the start of the message.

1



Figure 2: Time and frequency domain representations of yT . This transmission contains a
long message.

Next, in order to restore the original transmission signal before it was multiplied by a
high-frequency cosine wave in the time domain, yT (t) must be once again multiplied by the
same cosine wave, which is cos(2 ∗ π ∗ fc/Fs), where the cutoff frequency fc is 1000Hz and
the sampling frequency Fs is 8192Hz.

yC(t) = yT (t) ∗ cos(2 ∗ π ∗ fc/Fs) (1)

The result of this multiplication in the time domain is yC(t), whose frequency response
contains the original signal in the center and some high frequency noise outside the frequency
range of the original signal.

2



Figure 3: Time and frequency domain representations of yC . The frequency response contains
the original signal in the center.

To extract the original signal from yC(t), a low-pass filter with cutoff frequency fc
(1000Hz) is applied to yC(t). The result of this operation is x̃(t). Small-amplitude noise
is then filtered out in the time domain.

3



Figure 4: Time and frequency domain representations of x̃ after the small amplitude signals
are turned into zero. The frequency response resembles that of the original signal.

Once the original frequency response is restored, a signum function is applied to x̃ to
create x̃sign in order to turn all of the signals into 1, or -1 so that bits can be extracted from
the signal later on.

4



Figure 5: Time and frequency domain representations of x̃sign

Then, every 100th signal starting at index 50 from x̃sign is sampled (xsamp) to represent
the bits that were encoded in the transmission. Since the values contained in xsamp will be
1 or -1, the following equation is applied to convert the samples to 1 or 0 and create xd.

xd = (xsamp + 1)/2 (2)

Finally, xd is converted to a string to reveal the encoded message in the transmission.

3 Demo Video

Link to YouTube demo video

4 MATLAB Code

close all

load("long_modem_rx.mat")

5

https://youtu.be/yhU729mW__k


% The received signal includes a bunch of samples from before the

% transmission started so we need discard these samples that occurred before

% the transmission started.

start_idx = find_start_of_signal(y_r,x_sync);

% start_idx now contains the location in y_r where x_sync begins

% we need to offset by the length of x_sync to only include the signal

% we are interested in

y_t = y_r(start_idx+length(x_sync):end); % y_t is the signal which starts at the beginning of the transmission

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Decoder

% create a cosine wave to multiply the signal by

c = cos(2*pi*f_c/Fs*[0:length(y_t)-1]');

t = [0:length(y_t)-1]./Fs;

figure

subplot(211)

plot(t,y_t);

xlabel("Time (s)")

title('Time domain signal');

subplot(212);

plot_ft_rad(y_t,Fs);

title('Magnitude of frequency domain signal');

sgtitle("y_T")

% multiply the signal by the cosine

y_c = y_t.*c;

figure

subplot(211)

plot(t,y_c);

xlabel("Time (s)")

title('Time domain signal');

subplot(212);

plot_ft_rad(y_c,Fs);

title('Magnitude of frequency domain signal');

sgtitle("y_C")

% apply a lowpass filter to the result

x_t_tilde = lowpass(y_c, f_c, Fs);

% convert knwon noise to zeros

x_t_tilde(msg_length*8*100:end) = 0;

6



x_t_tilde(abs(x_t_tilde) < 0.02) = 0;

figure

subplot(211)

plot(t,x_t_tilde);

xlabel("Time (s)")

title('Time domain signal');

subplot(212);

plot_ft_rad(x_t_tilde,Fs);

title('Magnitude of frequency domain signal');

sgtitle("x")

% convert all nonzero values to 1 or -1

x_t_tilde_sign = sign(x_t_tilde);

previous_sign = 0;

% convert zeros to 1 or -1 depending on previous value

for i=1:msg_length*8*100

if(x_t_tilde_sign(i) == -1)

previous_sign = -1;

elseif (x_t_tilde_sign(i) == 1)

previous_sign = 1;

else

x_t_tilde_sign(i) = previous_sign;

end

end

figure

subplot(211)

plot(t,x_t_tilde_sign);

xlabel("Time (s)")

title('Time domain signal');

subplot(212);

plot_ft_rad(x_t_tilde_sign,Fs);

title('Magnitude of frequency domain signal');

sgtitle("x_{sign}")

x_samples = zeros(msg_length*8, 1);

for i=1:size(x_samples, 1)

x_samples(i) = x_t_tilde_sign(i*100 - 50);

end

% convert the vector to zeros and ones

x_d = (x_samples+1)./2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7



% convert to a string assuming that x_d is a vector of 1s and 0s

% representing the decoded bits

BitsToString(x_d)

8


	Introduction
	Procedure
	Block Diagram
	Steps

	Demo Video
	MATLAB Code

