L(2,1) Graph Labelling

Kenta Burpee, Phillip Post, and Ale Cuevas

What's L(2,1) labeling?

Overview

Mathematical Bounds

Our Implementation

What's L(2,1) Labeing?

L(2,1)-Labeling: A special graph coloring

For a graph, whenever x and y are two adjacent vertices then their label must have a distance greater than or equal to two.

Whenever x and y are two vertices with distance **two** between them, then their label must have a distance greater than or equal to **one**.

Say we have a three vertex, two edge graph, and we want to assign them a minimum label from the set {0,1,2,3,4...}

Done! But, we do have two holes...

7

Mathematical Bounds: Minimizing the largest label

Finding $\lambda(G)$: The minimum span of labels required $\{0, 1, \dots \lambda\}$

Griggs and Yeh's Conjectured Bound for λ (G)

 Δ = Highest degree vertex in a graph G

 $\Lambda^2 = 4$

Upper Bound for Cycles

 $\lambda = 4$ for C(n) where n ≥ 3

Some cycles have holes; others do not

 Δ = 2, so cycles meet the conjectured Δ^2 bound

Upper Bound for Complete Graphs

 $\lambda = 2(n-1)$ for K(n) where $n \ge 3$

Only even labeling numbers are used

 Δ = n-1, so complete graphs meet the conjectured Δ^2 bound

Algorithms for Minimizing $\lambda(G)$

 Δ = Highest degree vertex in a graph G

Greedy Algorithm $\Delta^2+2\Delta$

Modified Chang-Kuo Algorithm $\Delta^2 + \Delta - 2$

Griggs and Yeh's Conjectured Bound (No known algorithm)

Algorithmic Differences

Greedy Algorithm

- Iterate through vertices
- Assign lowest possible number
- Not seeing bigger picture, so prone to holes

Modified Chang-Kuo Algorithm

- Iterate through labeling numbers
- Assign current number to as many vertices as possible
- Looks at entire graph each time, so reduces likelihood of holes

Our approach

Takes a list of edge connections defined by the user

Converts this into an adjacency matrix

Solves and plots the labeled graphs with either the greedy or modified Chang-Kuo algorithm

Our Results (Cyclical Graph)

 $\lambda = 6$, Holes = 3 $\lambda = 4$, Holes = 0

Our Results (Random Graph)

Greedy

Chang-Kuo

 $\lambda = 8$, Holes = 3 $\lambda = 6$, Holes = 0

Check out our Code!

https://github.com/olincoll ege/L21-Graph-Coloring/ tree/main

Thank You! Special Thanks to Professor Nathaniel Karst of Babson (Olin '07) And Sarah Spence Adams!