L(2,1) Graph Labelling

Kenta Burpee, Phillip Post, and Ale Cuevas

Overview

2

Mathematical
Bounds

1

What's L(2,1) Labeing?

Two Towers On Band Blue

Two Towers On Adjacent Bands

$L(2,1)$-Labeling: A special graph coloring

For a graph, whenever x and y are two adjacent vertices then their label must have a distance greater than or equal to two.

Whenever x and y are two vertices with distance two between them, then their label must have a distance greater than or equal to one.

Let's do an example!

Say we have a three vertex, two edge graph, and we want to assign them a minimum label from the set
$\{0,1,2,3,4 \ldots\}$

Let's do an example!

Done! But, we do have two holes...

Mathematical Bounds: Minimizing the largest label

Finding $\lambda(G)$: The minimum span of labels required $\{0,1, \ldots, \lambda\}$

Griggs and Yeh's Conjectured Bound for $\boldsymbol{\lambda}(\mathrm{G})$

$\lambda(G)$

$\Delta=$ Highest degree vertex in a graph G

Upper Bound for Cycles

$\lambda=4$ for $C(n)$ where $n \geq 3$
Some cycles have holes; others do not
$\Delta=2$, so cycles meet the conjectured Δ^{2} bound

Upper Bound for Complete Graphs

$\lambda=2(n-1)$ for $K(n)$ where $n \geq 3$
Only even labeling numbers are used
$\Delta=n-1$, so complete graphs meet the conjectured Δ^{2} bound

Algorithms for Minimizing $\boldsymbol{\lambda}(\mathbf{G})$

$\Delta=$ Highest degree vertex in a graph G
Greedy Algorithm
1
$\Delta^{2}+2 \Delta$

2
Modified Chang-Kuo Algorithm
$\Delta^{2}+\Delta-2$

Griggs and Yeh's Conjectured Bound
3 (No known algorithm)

Algorithmic Differences

Greedy Algorithm

- Iterate through vertices
- Assign lowest possible number
- Not seeing bigger picture, so prone to holes

Modified Chang-Kuo Algorithm

- Iterate through labeling numbers
- Assign current number to as many vertices as possible
- Looks at entire graph each time, so reduces likelihood of holes

Our approach

Takes a list of edge connections defined by the user

Converts this into an adjacency matrix
Solves and plots the labeled graphs with either the greedy or modified Chang-Kuo algorithm

Our Results (Cyclical Graph)

Chang-Kuo

$$
\lambda=6, \text { Holes }=3
$$

$$
\lambda=4, \text { Holes }=0
$$

Our Results (Random Graph)

Greedy
Chang-Kuo

$\lambda=8$, Holes $=3$
$\lambda=6$, Holes $=0$

Check out our Code!

https://github.com/olincoll ege/L21-Graph-Coloring/ tree/main

Thank You! Special Thanks to Professor Nathaniel Karst of Babson (Olin '07) And Sarah Spence Adams!

